CONDUCTING LIQUID FLOW THROUGH A CHANNEL
IN A NONUNIFORM MAGNETIC FIELD

A. S, Gorinov

In this paper we examine the motion of an incompressible conducting liquid in a channel with non-
conducting walls in the presence of a highly nonuniform magnetic field.

This problem has been studied within the framework of linear theory many times [1-6]. In the
following we propose an iteration method for its solution. We study the general relations between the
parameters in the zone of marked magnetic field variation and in the region of quasi-developed flow (down-
stream from the zone of nonhomogeneity of the magnetic field). The calculations made show that the
results obtained using linear theory can also be used for finite values of the MHD interaction parameter.

1. We examine the steady motion of an inviscid, incompressible, homogeneously and isotropically
conductive liquid through a channel | x[<=, 0 <y <h in the presence of an external magnetic field B = (0,
0, Bxb(x)), (B,=const) for small magnetic Reynolds numbers, (This "effective" field is the result of
averaging the external magnetic field with respect to the z coordinate. The studied two-dimensional flow
must also be considered as a three~dimensional flow which has been averaged in a definite fashion.) The
system of MHD equations describing such flow has the form [1]
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Here u, v, and iy, jy are the dimensionless velocity vector components and the densities of the elec-
tric field j; p and ¢ are the dimensionless pressure and electric potential; z, y, x are dimensionless
coordinates; o and p are the conductivity and density of the medium; and V = const is the velocity averaged
across the channel section, We take V, o VBx/c, VBsh/c and sz as the characteristic values of the velocity
electric current density, potential, and pressure, respectively. We refer the coordinates to the channel
height h.

The dimensionless quantify s is the MHD interaction parameter.
The system (1.1), (1.2) is supplemented by the boundary conditions at x = —,
In the sequel we examine the following boundary conditions
»=0, jy=0 for y=0, y=1 (1.3)

We shall examine the case in which the external magnetic field decays rapidly outside its zone of
uniformity. For a sufficiently great length of this zone the function b can be approximated by the Heaviside

unit function
b(z) =0 for =<0, b(zy=1 for >0 (1.4)

Since the flow does not interact with the magnetic field as x = —«, the asymptotic conditions in the
case in which rot V = 0 as x — —« have the form

v—>0, u—1 for T — — oo (1.5)
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The solution of (1.1)-(1,5) was obtained in {1, 4, 6] under the assumption of smallness of s. The
solution was constructed in the form of series in the parameter s.

The electric parameters were calculated in the zero approximation and the nydrodynamic parame-
ters were calculated in the first approximation.

The aim of the present study is to construct the solution for finite s and clarify the possibility of
using the linear approximation for s ~1,

For subsequent analysis it is convenient to write (1.1), (1.2) in the form
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In these equations 6(x) = db/dx is the Dirac delta function and the quantity w is the vorticity.

To obtain (1.6) we must differentiate equations (1.1) with respecttoy and x and then subtract one
from the other. If follows from (1.6) that vorticity is conserved along streamlines for x < 0 and x > 0,
Since the vorticity equals zero for x = —» then w =0 for x < 0.

The first relation (1.8) is found by differentiating (1,2),

Relations (1.6)-(1,8) show that at the section x = 0 several of the MHD parameters and their derivatives
undergo a discontinuity. In the following this section will be considered a surface of discontinuity at which
the general relations which follow from the mass and momentum conservation laws and the equations of
electrodyanmics must be satisfied [4]. Thus, for x = 0 we have

ful=0, [s]=0, I[pl=0 (1.9)
ligl =0, [iyl+2(0y=20 (1.10)
Here the brackets [ ] denote the difference of quantities to the right and left of the section x = 0,

Relations (1.9) show that the parameters of an incompressible fluid traveling in a channel of constant
section in the presence of volume force of finite intensity vary continuously. It can be shown that the
derivatives du/dy, 8v/8y, du/dx also change continuously. However the derivatives 8p/8x, p/dy, dv/3x
(and consequently w as well) undergo a discontinuity at the section x = 0,

Expressions (1,10) follow from continuity of the electric field component normal to the surface and
the tangential component of the electric field.

Integrating (1.6) with respect to x in the limits (— ¢, + €) and letting € approach zero, with account
for (1.9) we find o
[o] =+ 200 (1.11)

Since w = 0 for x < 0, we obtain from (1,11) and (1.6)

0 (=<0
o={ [o] (z=+0)
Q, y) (#>0) (1.12)
210 (z, Y)] ¢
IxtY, Yy—2a(Z, ¥ v
Ed= oy eE w2 y’=§7:dx (1.13)

The last relation in (1,12) is the integral of (1.6) for 0 <x <=,

Equations (1.7) and (1.8) with account for (1.9)-(1.13) can now be written in the form
u A { 0 =<0 , au o

Ty T T Q@ ) (>0 Bz Ty 0 (Tee<e<eo) (1.14)
W=[0]=0 (=0, =0 (y=0,y=4h)
diy i dje | Oy _
=0 e Ty =0 ¢*O (1.15)
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The functions Qand u in (1.14) and (1.15), respectively, are unknowns and

ey /}5\__ L] must be found as a result of the solution of the problem.
5 b
Y ‘ Using (1.14), we can obtain the expression for the functions u and v in
terms of Q@ (by the Fourier method, for example).

19 / L] il

] 1 z Similarly, by solving the boundary value problem (1.15), in which u{0, y)
Fig. 1 is considered a known function of the coordinates, we find
aF aF <
17 ]'x_,__a_y_’ 7.1}:'—75" F,:_Z 2;;7; e“k"‘x'sinkny (1.16)
P Py AT k=1
28— ’ 0 1
i / 24 u (0, y) = Z‘, uy, sin kny, uk=ZSu(0, y) sin kny dy
o4 ] h=1 0
L
y T Sm 2. We write some relations which follow from (1.1), (1.2)
Fig. 2 u,2(0) —1=2P, P=p(—o0)— p (-4 ) 2.1)
1 1Y
P=Suzdy—1—s{\ic, ayay 2.2)
0 00
1/2
wy?(Yo) —u 2 (0) =25 S Jx (0, v) dy 2.3)

4

Moreover, from (1.13)
P PTI M (R o
e TR Ay e Mt L R (2.4)
If u(0, y) is known, these formulas make it possible to represent ui(y) approximately in the form of
a polynomial, after isolating the singularity at the wall. Here the function j. (0, y) is known from (1.186),

The calculations made it possible to conclude that in this case the function u(y) depends weakly on
the choice of the profile u(0, y) and for fixed discharge is defined primarily by the quantity x.

3. Let us examine the following iterative process, We take as the zero approximation the functions
00=0, w=1, =0, [x=/x(z, ¥) yo=/iyo(% ¥) 3.1)

The functions jx and jyg are calculated using (1.16), in which u(0, y) = 1. The first approximation
are the functions

©1 (z, ¥), w1, V15 Tots Iy (3.2)

The functions wy and €4 are calculated with the aid of (1.12) and (1.13) in which jx = jxg, u = 1y, v = vg.
The distribution of the velocities uy, vy is found from (1.14), where © = Q4 x, y) and is calculated using
the Fourier formulas or by any other method. The electric currents jy; and jy1 are found from (1.8) and
are calculated using (1,16), in which u(0, y) = uy (0, y). The second and subsequent approximations are
found similarly.

We note that the quantities (3.1) coincide with terms of series having zero order of smallness in the
parameter s , and the quantities (3,2) coincide with the corresponding sums of terms of zero and first
order. However, when using the iterative method the parameter s is not assumed small. In principle it
is possible to write out in analytic form any iteration, however,the volume of the calculations when using,
for example, the Fourier method increases with the iteration number so rapidly that the use of the higher
approximations becomes impossibie in practice.

To estimate the rate of convergence we shall examine the following model problem. We assume that
in (1.14), (1.15)
7= (0, v
T (3.3)
The solution of this problem corresponds to the vorticity conservation condition along the lines y =
const (for x > 0) rather than along the streamlines, From the solution of (1.14) for € = Q(y) we can find
that

Q=s

w () —4 =2 @0y —1) (3.4)
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s=5 : Since Q = du,/dy as x — =, we find from (3.3)

1

du = (0 y)

ﬁ:s%y—), u+dy= u(O, y)dy =1
0 0
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|
|
i 1
|
|
|

Using (3.4), we obtain the equation

| o

Y 1
d
'\;\ ] J 2u° %: six (0, y), Su" dy——.‘ 1, @ @=u 9) (3.5)
A\Y °

The function j. (0, y) is expressed in terms of u°® with the aid of the
solution (1,16),

: I
0 H v !

| The iterative process consists in sequential determination of the
28— N functions jx (0, y) from (1.16) and u® by solution of the nonlinear equation
. \, (3.5)., We take as the initial value u°(y) =1.

w
Pz

/

N

The results of the solution of the model problem are shown in Fig, 1
where the dark circles are the values of the asymptotic velocity at the wall
u+ (1) = uy (0) = U4y, calculated on a computer with the aid of three itera-
tions for s =5. We see that the difference between the second and third approximations is so small that
only two iterations are necessary for a computational accuracy of one percent.

Fig. 3

If an error of no more than 5% is tolerable we can use only the first iteration. We note that the
solution of the model problem does not cause any difficulty and the formulated algorithm permits obtaining
the solution with arbitrary precision,

There is good reason to believe that the nature of the convergence of the process in solving (1,1)-(1.5)
will be the same as for the model equation.

Let us find the pressure drop in the channel using (2.2), Using only the zero iteration, we find

1y
Pu=—-s§8fxo<o, v)dy dy (3.6)
¢
The first iteration yields

y

1
Pr= “31d1/—1-5§81'x1(0, y) dy dy (3.7
0

Oy

The quantity Py corresponds to the calculation using linear theory.
The pressure losses Pyand Py are shown in Fig, 2.

We see from the figure that linear theory yields quite satisfactory results up to s = 3-5. It is
significant that the pressure drop calculated using linear theory is too high.

Let us find the asymptotic velocity profile in the second approximation (second iteration).

This can be done approximately by using .1)~(2.4) and not solving the problem (1,14) with € known
from the first approximation,

After isolating the singularity at the wall of the channel, we used here the trigonometric approximation
of the function,

Figure 3 shows the velocity uyy (dashed) determined using linear theory [3] and the velocity u.,
(continuous) calculated in the second approximation. The results of the calculation of u4y, are also shown
in Fig. 1 (open circles). We see that the nature of the iterative process convergence is the same as in
the model problem,
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